
Chapter 13

Computing and Software

There are a large number of computing challenges

that CDF must face in Run II. The data rates will

be much higher than those we have dealt with in the

past. Consequently we will have much larger datasets

which must be stored and made accessible in a timely

fashion to many physicists at many collaborating in-

stitutions. In addition we would like to evolve our

software environment to use more modern program-

ming techniques and languages such as Object Ori-

ented programming and C++.

In the next section we review the present Run

I system followed by a section describing the ex-

pected data volume in Run II. The remaining sec-

tions describe the computing model, the software en-

vironment, the event reconstruction, the calibration

database, and �nally the simulation requirements.

13.1 The Run I System

In Run I CDF recorded 64 million events in the main

data stream (Stream B) which were processed in

real-time and made available to the physicists within

about 2 weeks of the data being taken. In addition,

3.7 million events out of the total were also recorded

in a separate \express line" stream (Stream A) and

processed within hours. This stream contained the

high-transverse momentum leptons necessary for the

top quark search. It was also used to monitor data

quality during the run. An additional 28 million

events were recorded for processing after the data

taking ended (referred to as Stream C). These events

were mainly low-transverse momentum leptons in-

tended for studies of b-quarks.

The analysis computing needs for Run I were pro-

vided by a mix of central and desktop systems. These

systems were a combination of VAX/ALPHA ma-

chines running VMS plus Silicon Graphics and IBM

machines running UNIX. The central VMS system

consisted of about 1200 MIPS of CPU (FNALD) and

the central UNIX system (an SGI Challenge XL with

28 processors - CDFSGA) consisted of 2400 MIPS.

In addition, the desktop systems add 3000 MIPS of

VMS computing and 1600 MIPS of UNIX computing.

The production computing needs were met by the

centrally supported UNIX farms. CDF had an allo-

cation of 3000 MIPS of farm computing in the form

of 63 SGI 4D/35 nodes and 32 IBM 320H nodes. The

data were processed on the farm nodes and then split

up into physics datasets on the farm I/O nodes and

then staged to 8mm tape.

The data sizes and volumes are summarized in Ta-

ble 13.1. There were 27 DST datasets and 39 PAD

(PAD - Physics Analysis DST) datasets. The DSTs

from the main data stream are not heavily used in

analysis. The total data volume for Run I was 41 Ter-

abytes, of which 16 Terabytes was due to inclusion of

raw data on the inclusive and split DSTs. The infor-

mation about where a �le is located is stored in an

experiment speci�c database which uses FORTRAN

indexed �les and is kept on FNALD.

The primary means of data storage for Run

I was 8mm tape (double density tapes with 5

Gbytes of storage and a maximum I/O rate of 450

Kbytes/second). Selected datasets were further re-

duced and stored in an STK tape robot which had an

initial capacity of 1 Terabyte and has recently been

upgraded to 3 Terabytes. This system is accessed

via the FATMEN catalog system (a CERN product)

and an automatic staging system - users do not need

to know which tape the data is stored on, only the

�lename. The central UNIX and VMS systems also

have about 500 Gbytes of disk devoted to physics

datasets. There is over 200 Gbytes of disk in the

staging pool for the STK robot. There are also sig-

ni�cant disk resources (about 600 Gbytes) attached

to desktop systems.

13-1

Data Type Size Total Volume Comments

(Kbytes) (Terabytes)

RAW 130 8.3

Inclusive DST 190 12 The DST includes the RAW data

Split DST 190 16 There is a 30% overlap of events on the split DST

Inclusive PAD 32 2

Split PAD 32 2.7 There is a 30% overlap of events on the split PAD

Table 13.1: Summary of the Run Ib data volume.

Copies of selected datasets were made for distribu-

tion to remote institutions. In Run Ib about 17000

8mm tape copies were made. About 3600 of these

were kept on site at Fermilab for use by physicists in

the CDF Portakamp complex and the rest were sent

o�site.

The software environment uses FORTRAN as the

primary programming language with limited use of C

in system level applications. A mix of experiment de-

veloped applications, Fermilab Computing Division

products and CERN products are used in the soft-

ware development and analysis. The code is presently

supported on VAX/ALPHA VMS, SGI UNIX and

IBM AIX platforms.

13.2 Expected Data Volume and

processing requirements

The upgraded DAQ system is expected to be able

to handle a Level 3 input rate of about 300 Hz with

an peak output rate of 30-40 Hz assuming a 90% re-

jection factor. We expect the raw event size to be

about 250 Kbytes per event, hence the Level 3 out-

put rate is expected to be 7.5-10 Mbytes/second to

mass storage. Past experience has shown us that the

40 Hz peak translates to a 20 Hz average rate while

there is beam in the accelerator and the experiment

is recording data. This implies that we will record

about 300 million events per year, yielding 80 Ter-

abytes of raw data. This is about 10 times the total

Run I volume. In a two year run which is assumed to

be about 2 fb�1 the dataset will be 600 million events

and 160 Terabytes in size. This corresponds to the

main dataset, we have not included any low priority

stream such as the Run I Stream C data.

In order to estimate the sizes for the reconstructed

data we have assumed that the reconstructed data

size remains at about 50% of the raw data size and

that the size of a PAD event will be about 15% of

the raw data size. We also assume that there will

be an \express-line" stream which will be about 10%

of the total dataset, and that these events will be

written out separately so they can be processed im-

mediately. As noted above, we have duplicated the

raw data on both the inclusive DSTs and the split

DSTs. We will assume that this is no longer practi-

cal due to the larger data volumes expected and so

the DST format will no longer include the raw data.

We will also assume that for most data streams there

will not be a split DST. Under these assumptions the

DST+PAD information will add 75 Terabytes of in-

formation. For ease of access we will probably need to

store the split PAD events separately which will add

another 24 Terabytes of data. The \express-line" raw

data will be 16 Terabytes and the DST+PAD infor-

mation will add 8 Terabytes. The split \express-line"

PADs will be another 2 Terabytes. So the total vol-

ume will be about 300 Terabytes for a 2 fb�1 run

(allowing for a 30streams). Note that if the DAQ

system delivers more Level 3 output rate then these

numbers will increase. We take 300 Terabytes for 2

fb�1 as our baseline.

At present we do not have an estimate of the CPU

time per event for reconstruction in Run II. Much

of the code will be new and does not yet exist. We

13-2

can make an estimate of the production requirements

based on the execution time per event in Run I.

In Run Ia the execution time was 400 MIPS sec-

onds/event for an average instantaneous luminosity

of 3� 1030 cm�2 s�1. In Run Ib the execution time

was 700 MIPS seconds/event at an average luminos-

ity of 9�1030 cm�2 s�1. This increase was due to the

extra interactions per crossing at the higher luminos-

ity. Although the luminosity will increase further in

Run II, the number of bunches in the accelerator is

increasing so we estimate only an additional 20% in-

crease in processing time from this source. Allowing

for some increase in processing time we will use 1200

MIPS second/event for our baseline execution time

for Run II. We need to process 300 million events per

calender year, i.e. 6 million events per week. The

input rate required would be 2-3 Mbytes/second and

the CPU requirements for processing would be be-

tween 15,000 MIPS to 25,000 MIPS depending on

the processing e�ciency.

13.3 Computing Model

In this section we describe the proposed computing

model for Run II and its various components. We

will �rst describe the Run I computing model. The

Run II model will be similar but with some important

changes to provide faster and more transparent access

to large datasets.

13.3.1 Run I Computing Model

In Run I we have followed a model where the data and

the CPU are tightly coupled. We have not provided

high-bandwidth access from desktop systems to the

central data stores. In addition, we have no dedicated

batch systems, all the central systems are used for

both batch and interactive computing.

The current CDF data persistency package is

YBOS[1]. The data is stored in YBOS banks. The

raw data is stored on 8mm tape. The event recon-

struction is then performed on farms of UNIX work-

stations. A subset of the YBOS banks containing

physics information from the reconstruction are also

compressed to create PAD events. The events are

also split into production datasets. These datasets

are taken by the physics groups and futher split or

compressed. This can be a lengthy step and di�cult

to recreate if a problem is discovered later. This is

an I/O intensive job and is usually performed on the

central systems (usually by a small number of peo-

ple) where there is e�cient access to large production

datasets on 8mm tape. The resulting datasets are

stored on disk or if they are too large for disk they

are placed in the STK tape robot. Up to this point

in the process, the data is still in the form of YBOS

banks and access to the events is �le-based.

The users doing physics analyses perform further

selections of these datasets, normally on the central

systems. The result of these event selections is typ-

ically an ntuple[2] which stores the data in ZEBRA

RZ[3] format. These ntuples are usually small enough

to be transferred to the desktop system for further

analysis. Most physics analyses start from the PAD

data. However a small number of analyses such as

the W-mass measurement require the DST data. All

analyses may require the full DST for a small num-

ber of events. The amount of data used from the

32 Kbyte PAD event ranges from 1 Kybte for ex-

otic searches to about 10 Kbyte for a typical b-quark

analysis.

13.3.2 The Run II Computing Model

The primary operating system in Run II will be

UNIX. The VMS operating system will not longer be

a supported operating system at Fermilab and will

not be part of the Run II computing environment.

We do not yet know what role personal computers

(PCs) might play. The goal is to design a system

that is as operating system independent as possible

to allow us to respond to future trends in computing

with minimal upheaval.

Production UNIX farms are a cost e�ective way

to obtain the necessary CPU cycles to perform the

event reconstruction and we expect that this will be

the primary method of doing bulk event reconstruc-

tion in Run II. However, we do not ignore the possi-

bility that farms of PCs running LINUX, for example,

could play a role.

The production farm I/O servers will read raw data

directly from the tape robot and write the processed

data back to the same robot. The processed informa-

tion for an event will not be stored in the same �le

or tape as the raw information. As stated above,

the DST format will no longer include the RAW

data as this will signi�cantly increase the storage re-

quirements. The data will also be split into physics

streams at this stage. In most cases the splitting

13-3

will be done at the PAD level. Only for a few se-

lected datasets would split DSTs be produced. The

information about dataset location and which events

belong to a particular dataset would be recorded in

a central database.

Mass Storage and Data Access The baseline

data volume expected in Run II is 250 Terabytes.

It is not practical to imagine storing this quantity of

data on 8mm tape. We plan to write the data to stag-

ing disk at the experiment and transmit it directly to

staging disk attached to a robotic tape store in Feyn-

man Computing Center (FCC). Tape robots already

exist that can handle the data volume we will have in

Run II with the required data transfer speeds to and

from the magnetic media. Clearly the exact choice

of technology will be made closer to the start of Run

II. In addition to the robot, one requires Heirarchical

Storage Management (HSM) software to control the

robot.

It may be desireable to store all the information

about a particular type of physics object in one loca-

tion in the robot to improve the access time for event

selections, which typically look at a small amount of

information.

A database will be necessary to record the informa-

tion about which events belong to a dataset and on

which physical tape they reside. The database must

interface to the HSM software to allow the informa-

tion to be retrieved from the tape. Retrieval of data

ahould be transparent to the user, i.e., the user need

only know the name of the dataset they are interested

in, not the list of �les that make up that dataset. Also

the user should not need to know the physical orga-

nization of the dataset. Users would submit event

selection requests to the central database by specify-

ing which dataset they want to access and providing

a set of selection criteria. The physics datasets could

be created from the production dataset in the same

way. If these datasets were large it would probably

not be practical to physically duplicate the events.

Instead the list of events that make up the dataset

would be recorded in the central database.

The robot will be attached to the central analysis

facility which will consist of some number of multi-

processor UNIX machines coupled together by a high-

speed network. These machines will support both

batch and interactive use. Users could also submit

event selection requests to the central database from

their desktop workstation and have the selected data

returned to the workstation. The event selection will

run on the central system, thus ensuring e�cient ac-

cess to the central data store, and only the selected

data will be returned, thus minimizing the network

tra�c. A goal would be to read a 2 Terabyte dataset

in a few days, this requires tape speeds of the order of

10-20 Mbytes/second. If we are able to read pieces of

events then this time could be reduced even further.

With this kind of access time, remaking a dataset

would not incur a severe time penalty.

Clearly, there will still be a need to export datasets

to remote institutions. The wholesale duplication of

some of the larger production datasets may not be

practical. It may be more useful to provide copies of

the physics datasets which will be smaller. Given the

goals stated above for reading datasets, it will also

be possible for users to create specialized datasets on

the central system and copy them to tape for export.

Most frequently accessed datasets would be kept on

disk. It might be necessary, in order to maximize the

use of the disk space, to keep only the most frequently

accessed components of the events on disk, .e.g. for a

QCD dataset we may decide that it is not necessary

to keep the tracking data on disk. If a component

of an event is requested and the component is not

on disk then a staging operation would be performed

to retrieve the necessary information. This would be

transparent to the user.

Another idea that is being investigated is the con-

cept of \data mining". A subset of the data is stored

on disk in a format which allows for fast event se-

lection queries to be run over large amounts of data.

The selected data can be output in a user-selected

format, e.g. ntuples. The event selection only uses

the disk resident scannable data but can then trigger

retrieval of additional data from tape for any given

event. This approach is under investigation in the

High Performance and Parallel Computing group in

the Fermilab Computing Division.

Some of these goals imply changes to the CDF per-

sistency package YBOS. This package treats events

as a sequential list of banks which is too restrictive

for Run II. We are presently evaluating alternative

persistency mechanisms. One option is to rewrite

the YBOS package in C++ to include the necessary

features. Some work has already been done on this

option and it looks feasible. Another interesting op-

tion is the use of an Object Oriented database to store

the data. This approach is being seriously studied by

the RD45 project at CERN [4]. The potential cost of

13-4

such an approach is an issue as is the maturity of the

technology. Even if this is not a viable option for the

beginning of Run II, we should not design a system

that prevents the use of such approaches later on.

Networking We are at present planning an up-

grade to the networking infrastructure at CDF which

will bring �ber to each desktop, thus opening up the

possibility of FDDI, ATM etc. to the user's worksta-

tion. This upgrade should be su�cient to meet the

desktop networking needs for Run II.

In the central systems we may require higher band-

with connections. We will have to connect together

multiple multiprocessor UNIX machines and provide

each with a high-bandwidth connection to the robot.

Possible candidates include Fiber Channel or HIPPI.

A dedicated 10-20 Mbyte/second connection be-

tween B0 and FCC may also be necessary for the

transfer of the raw data from the staging disks in B0

to the robot in FCC.

Analysis Computing The analysis computing

will be provided by a mix of central systems plus

desktop workstations. As stated above, the machines

will be running the UNIX operating system. The

role of PCs in the system has not been considered at

present.

We can make a rough estimate of the CPU needs

by scaling from Run I. This suggests that we will

require roughly 30,000-40,000 MIPS of computing to

meet the Run II analysis needs. This can be spread

between central systems and desktops.

13.4 Software environment

In this section we describe the various components

of the software environment. This is the part of the

computing environment that most directly impacts

the user and includes such things as the choice of

programming languages and the framework used for

analysis.

13.4.1 Software Methodology and Lan-

guages

The computing problem faced by a large experiment

in high-energy physics involves the manipulation of

large volumes of complex, structured data which de-

scribe the observed physical interactions, components

of the detector, and the intellectual framework used

to interpret the data. Low-level data structures are

combined to form lists which are utilized by algo-

rithms to generate structures at a higher level of ab-

straction. A typical example of this process is the

assembling of hit data from a tracking chamber into

found track segments, which are then assembled into

track helix parameters.

There is a natural relationship of this process

to the concepts of the object-oriented programming

methodology. Indeed, the current CDF software may

be described as an object-oriented data design op-

erating within a Fortran framework. To accomplish

this goal, very signi�cant extensions of the native For-

tran environment have been provided in the past, us-

ing customized products with a very large overhead

in maintenance and low portabililty.

Mapping of software objects into code may be nat-

urally accomplished by an object-oriented program-

ming language such as C++, in which object descrip-

tion is provided at a low, native level in the compiler.

In addition, other potentially useful features of the

OO model, such as inheritance and overloading, are

provided in such a language.

The use of the C++ programming language will be

a feature of the software development environment

for the CDF Run II upgrade. We expect to devote

a large e�ort to providing the necessary design tools

and support required by this initiative. The choice

of C++ is mandated by its wide use in scienti�c and

technical �elds, including most new projects in high

energy physics (BaBar, CLEO III, and LHC experi-

ments).

Because of the extensive existing software base of

the CDF experiment, we expect to need to continue

support for the Fortran 77 programming language.

The exact level at which the two languages must in-

teract is still under discussion. One possible model

is to allow the use of relatively large scale software

units (\modules") in either Fortran or C++, but to

require language consistency within a single module.

13.4.2 CodeMangement and Distribution

For a software project of the scope of the CDF up-

grade, it is necessary to provide an adequate struc-

ture to manage and track the development of the sys-

tem. Developers must be able to easily access the

code they are working on and transparently bene�t

from the work of others. In some instances, a reser-

vation mechanism can prevent conicting changes in

13-5

programs; at the least a mechanism for detecting such

changes is essential. It is also desirable to provide ac-

cess control to protect the software and avoid unau-

thorized modi�cations.

The primary code repository for the CDF Run II

upgrade software will be the central UNIX comput-

ing facility located at Fermilab. CDF is currently

carrying on active discussions on implementation of

this repository in the context of the Con�guration

Management Working Group, a joint working group

of CDF, D0 and the Fermilab Computing Division.

It is very likely that the recommendations of this

group will focus on the Concurrent Versioning System

(CVS) utility, which is widespread on UNIX systems

and in the high energy physics community. A system

based on CVS allows any part of a directory tree to

be accessed, modi�ed, and tracked as a unit, from

individual �les to the entire repository.

We expect to provide a mechanism for access-

ing code in the CVS repository using a client-server

model. This technique, for which there is a work-

ing large system to serve as a prototype (the Sloan

Digital Sky Survey), will allow developers to work

on local UNIX systems with the code they require,

then merge it back into the primary code repository.

It also provides the possibility of integration of user-

de�ned procedures for such functions as detailed ac-

cess control and required testing at check-in time.

CVS permits concurrent changes by multiple devel-

opers and blocks assembly of conicting changes. If

reservations are deemed necessary, a user-de�ned pro-

cedure can be used to provide this feature.

The software package must be distributed to col-

laborating institutions and other supported comput-

ing installations (e.g. the distributed desktop sys-

tems used by CDF physicists). We expect to use the

functionality provided by the code management sys-

tem described above to allow on-demand updates of

the code while it is under development (this is an on-

going process). Tagged releases of packages will be

distributed via batch updates in compressed format,

as we have successfully used in Collider Run I.

13.4.3 Reconstruction and Analysis

Framework

A framework for experimental application programs

should provide adequate exibility to address the

diverse computing needs of the CDF collaboration.

These include Monte Carlo Simulation, bulk produc-

tion of analysed datasets, user analysis, and the Level

3 trigger system of software �ltering. The framework

should support both interactive and batch operation,

and transparently address all supported media.

CDF has a framework which has been used with

great success in Run I and previously. It enables the

user to de�ne a set of software modules which are

then incorporated at run time into sets which cor-

respond to particular analysis pathways. Standard

modules provide, for example, data i/o and report-

ing of data contents. The intrinsic modularity of the

structure encourages a great deal of software reuse.

Application building tools have been provided to as-

sist the user.

The current CDF framework is heavily dependent

on custom utilities to handle internal communica-

tions and generate the user interface. We plan to

reduce reliance on these products as they become in-

creasingly unmaintainable. This will require modi�-

cations to the framework software to maintain com-

patibility. The design and implementation of these

changes, including possible new products, will bene-

�t heavily from our extensive experience in this area.

Other experiments are also active in this area, and

we will examine the possibility of joint solutions.

The user interface for the Run II framework will

take advantage of developments in third-party graph-

ical user interfaces (GUI). One possible candidate for

such an interface is the TCL/TK scripting language

and toolset. The BaBar experiment has a prototype

framework based on this product, which we are test-

ing. Other public domain and commercial products

will also be evaluated where appropriate.

13.5 Event Reconstruction

In Run II we will have many new detector subsys-

tems for which we must write new event reconstruc-

tion code. As stated above, we expect use of the

C++ programming language to feature in the Run II

reconstruction package. A number of detector groups

in CDF (SVXII, IFT) are experimenting with the use

of C++ in their reconstruction code. The results look

promising.

The event reconstruction package is constructed of

a number of independent \modules" that each per-

form a speci�c task. Each module communicates its

data to another by use of a well de�ned interface

(presently this interface is YBOS data banks). Mod-

ules execute sequentially and in a given order, i.e., the

13-6

Vertex
finding

Calorimetry

Tracking

Jet
Clustering

Electron
Clustering

Muons

Figure 13.1: The logical ow of CDF event reconstruction

in Run I

tracking module must run before the electron �nd-

ing module because electron identi�cation requires

tracks. This will be true even in an object-oriented

model. Parameters can be set at run-time that gov-

ern the behaviour of a particular module. In Fig. 13.1

we show the logical ow of the existing CDF event

reconstruction.

As described previously, the event reconstruction is

carried out on farms of UNIX workstations (worker

nodes) connected to a central I/O server. Each event

is read from tape or disk and sent to a worker node for

processing. when processing is complete the event is

sent back to the I/O server for output. The CPS (Co-

operative Process Software) product devloped by the

Fermilab Computing Division has been used to carry

out the event distribution. We anticipate continuing

to use a similar product for Run II.

13.6 Calibration Database

In order to maintain an adequate record of detector

performance, detailed information on calibrations,

detector status, and beam conditions is recorded dur-

ing checkout and running. Since a great deal of cal-

ibration is performed locally, the calibration infor-

mation can be divided into data required by o�ine

processing (which must be served to the processing

clients) and strictly local information, which is main-

tained at the experiment for diagnostic purposes. In

addition, the information may be generated either by

hardware calibrations in advance of datataking, or by

monitoring software during datataking. (Examples of

the latter are dead channel counts and information on

beam conditions.)

In previous runs, calibration data has been main-

tained everywhere in a custom database using YBOS

as its primary keying mechanism and data retention

mechanism. A run-number based index provided e�-

cient access to the data. Changes in YBOS will have

implications for calibration data.

Design decisions for the calibration database will

be based on an analysis of the amount of calibra-

tion information to be generated by the experiment

and where it will be needed during reconstruction.

The results of this analysis will likely constrain our

choices of implementation. An example is the use of

commercial databases, which may only be useful in

limited locations due to licensing costs.

In light of past experience, and considering the

large amount of new hardware being commisioned for

Run II, we expect to need to be able to modify the

detailed implementation of our calibration storage.

A well-designed interface to the calibration data will

make this evolution possible. We plan to test such

an interface during FNAL testbeam running, even if

the �nal low-level implementation is still changing.

13.7 Simulation

The CDF simulation will require major modi�ca-

tions before the next Tevatron run. These modi�-

cations are necessary both because the detector itself

is changing (new tracking detectors, new calorime-

try in region � > 1:0 and a change in the z position

of the forward muon toroid) and because the CDF

software environment is changing. In particular, if

CDF decides to move towards the use of the C++

programming language, the simulation will move in

13-7

that direction as well.

For Run I, CDF has two independent simulation

packages, a fast simulation (QFL) that produces

as its output high-level reconstruction banks and a

slow simulation (CDFSIM) that produces raw data

banks. Both simulations rely completely on CDF-

speci�c code (i.e. neither one uses the GEANT sim-

ulation package). Both run within the CDF analysis

framework and use the CDF persistency mechanism

(YBOS).

The purpose of the CDF fast simulation (QFL)

is to provide an appropriate tool for generating large

statistics Monte Carlo samples to determine the over-

all acceptance for various physics analyses and to

study the dependence of this acceptance on system-

atic variations in either the detector response or the

physics model. The philosophy of the package has

been to make the highest level data structures possi-

ble rather than simulate raw data and to use param-

eterized responses rather than a �rst principle ap-

proach. Signi�cant e�ort has been put into param-

eterizing the response of the calorimeter (including

calibration, non-linearities, cracks and variations in

gain across the face of the detector), the muon sys-

tem (including non-uniformmagnetic �eld e�ects and

multiple scattering), the pre-radiator and the strip

detectors at shower max. Because the performance

of the silicon vertex detector plays such an impor-

tant role in the top analysis, this detector has re-

ceived special attention. In this case, raw hits are

simulated (including the e�ects of multiple scatter-

ing and Landau uctuations) and the CDF pattern

recognition and �tting code is used to associate these

hits with tracks. In the case of the central tracking

chamber, however, the simulation does not produce

raw hits. Instead the tracking resolution is param-

eterized by generating a 5x5 covariance matrix for

each track and then using this covariance matrix to

create the smeared track parameters. Thus, the fast

simulation does NOT allow detailed studies of pat-

tern recognition e�ciencies. Instead, pattern recog-

nition studies are performed using the slow Monte

Carlo (CDFSIM). An alternative technique which is

commonly used in CDF is to measure track recon-

struction e�ciencies is to imbed single Monte Carlo

tracks in real data events.

The current version of QFL can simulate a tt event

in approximately 0.7 MIP-sec. By comparison, full

reconstruction of such events from raw data takes

about 700 Mip-sec. The speed of the package re-

sults from the fact that the number of volumes in

the simulation is small (� 30) and the step size

is large, from the fact that hadronic and electro-

magnetic showers are parameterized and from the

fact that pattern recognition in the central tracker

is not performed. In QFL, the step size is set by the

path length to the volume boundary unless a discrete

process (bremsstrahlung, pair production, decay-in-

ight) occurs within the volume, in which case the

particle is stepped to the point where that process

occurs. The trajectory is corrected for continuous

processes (energy loss and multiple scattering) at the

exit point of the volume. At each step, the track tra-

jectory (momentum and position) is stored in a data

structure. Genealogical information relating gener-

ated tracks and vertices to the simulated tracks is

stored, including information necessary to trace a

generated particle's fate through discrete processes

such as decays. Structures that store the genealog-

ical relationship between generated tracks and hits

in the detector are available as an option. All such

structures can be output as part of the standard CDF

event record.

Our goal for Run II is to maintain the speed and

functionality of the current fast simulation, while im-

proving its exibility. In particular, we plan to incor-

porate current CDFSIM functionality (the creation

of raw hits in the tracking data) as an option within

the fast simulation framework.

We are currently exploring options for restructur-

ing the simulation. One possibility would be to use

a GEANT4 framework. In this case, GEANT4 rou-

tines would be used to trace particles through the

detector. To maintain the speed of the simulation,

we would continue to use CDF speci�c parameteriza-

tions of calorimeter showers and we would keep the

geometry description extremely simple. A second op-

tion for Run II would be to use as a framework the

MCFAST simulation package currently being devel-

oped by the Fermilab Computing division. The third

option would be to continue the current practice of

using CDF-speci�c code. Prototyping e�orts on all 3

approaches are currently underway. A �nal decision

on the frameworkwill be made in Spring 1997, several

months after the �rst beta-test release of GEANT4.

13-8

Bibliography

[1] YBOS is an extension of the BOS package from

DESY. It is written in FORTRAN and combines

the functions of data persistency and memory

management.

[2] An ntuple is like a table where each event is a

row of the table and each variable in the event

is a column. It is part of the CERN HBOOK

package and is widely used in HEP experiments.

HBOOK, CERN Program

Library Long Writeup Y250, Version 4.2, Ap-

plication Software Group, Computing and Net-

works Division, CERN, 1993.

[3] ZEBRA is a CERN package that performs the

same functions as YBOS. It is written in Fortran

and combines the functions of data persistency

and memory management.

ZEBRA, CERN Program Library Long Write-

ups Q100/Q101, Application Software Group,

Computing and Networks Division, CERN,

1993.

[4] RD45 is a CERN

project to study persistent object managers for

HEP. Their latest status report can be found at

http://wwwcn.cern.ch/pl/cernlib/rd45.

13-9

